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’ INTRODUCTION

We have previously examined the relationship between drug
pharmacology and structural similarity in the context of demon-
strating that the human design process has a strong 2D reasoning
bias.1 Using a deeply annotated database of drug structures
linked with their primary (desired) targets and secondary ones
(“off-targets” generally responsible for side-effects),2 we identi-
fied drug pairs that shared primary targets (primary target pairs)
and those where the primary target of one drug was a secondary
target of another (side-effect pairs). Among side-effect pairs, 2D
similarity was extremely low when compared with primary target
pairs. That is, when making an intentional design (developing a
new drug for a particular indication where other drugs exist), we
observed much higher 2D structural bias than when a pharma-
cological effect was unintentional. Apart from quantifying the 2D
bias in human design, the study provided ample support for the
proposition that molecules that appear to share little structural
similarity by eye often share pharmacologically important effects.1

The economic incentives underlying the discovery process
appeared to be a key driver of incremental design strategies. Among
drug pairs patented close together in time, 2D structural simi-
larity was much higher than for drug pairs patented at distant
times. In cases where on-patent therapeutics exist for an indica-
tion, introduction of a patentable close analogue can still be
profitable. However, novelty in pharmacological action is clearly
more important when competing against cheaply priced off-
patent drugs. We speculated that structural novelty, measured by
lower 2D similarity, leads to increasing novelty of pharmacologic
action in the whole human organism. Figure 1 shows a typical
example that illustrates these points. The 2D structures show
imipramine (the first serotonin reuptake inhibitor), amitriptyline
(a fast follow-on drug), and citalopram (a much more selective
serotonin reuptake inhibitor). The 3D overlay shows that, while
citalopram exhibits significant structural novelty at the 2D level,

consideration of its similarity to imipramine in 3D shows high
congruence.

Our previous work considered what was true about the simila-
rities of drug pairs given that one knew about the pharmacology
of both of the drugs for the pairs in question. The present study
asks the converse question. What is true about the molecular
pharmacology of a newmolecule given its similarity to amolecule
or sets of molecules with known pharmacology? The question
takes two forms. One is formulated as the task of prediction of
primary and secondary targets of an as yet uncharacterized mole-
cule. This is an important operational issue: identifying potential
off-targets early in drug discovery. The other question asks how
much novelty in pharmacological action is expected to arise from
structural novelty in a new drug. This question revolves around
me-too drugs. It is primarily a strategic issue for pharmaceutical
development and a public policy issue for regulatory bodies. Both
the prediction and novelty questions hinge on differences
between 2D and 3D molecular similarity approaches because
their underlying biases are different.

The present study establishes a framework in which 2D and
3D similarity computations can be directly compared and also
combined. Given this framework, we studied the similarity patterns
exhibited by 358 marketed small molecule drugs linked through
partially shared molecular pharmacology and addressed two
broad questions. First, we quantified the degree to which primary
and secondary targets could be predicted using 2D similarity, 3D
similarity, or a combination of both bymaking use of sets of drugs
whose targets were known. Second, we quantified the likelihood,
based purely on molecular similarity, that drug pairs would exhibit
different levels of overlap in terms of their detailed molecular
pharmacology. The specific methods used were Surflex-Sim, and
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ABSTRACT: Drug structures may be quantitatively compared
based on 2D topological structural considerations and based on
3D characteristics directly related to binding. A framework for
combining multiple similarity computations is presented along
with its systematic application to 358 drugs with overlapping
pharmacology. Given a new molecule along with a set of
molecules sharing some biological effect, a single score based
on comparison to the known set is produced, reflecting either
2D similarity, 3D similarity, or their combination. For predic-
tion of primary targets, the benefit of 3D over 2Dwas relatively small, but for prediction of off-targets, the added benefit was large. In
addition to assessing prediction, the relationship between chemical similarity and pharmacological novelty was studied. Drug pairs
that shared high 3D similarity but low 2D similarity (i.e., a novel scaffold) were shown to be much more likely to exhibit
pharmacologically relevant differences in terms of specific protein target modulation.
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the 2D GSIM computation implemented within the Surflex
platform.1

With respect to the first question, the results were expected,
but striking as to degree. The performance of the methods for
predicting target annotations was 2D < 3D < 2D + 3D. For
primary target prediction, at a conservative threshold at which to
assign annotations, true positive rates were 37%, 46%, and 59%,
respectively. Consistent with our prior observations, 3D similar-
ity did not yield a dramatic gain over 2D for primary targets due
to the historical design bias problem: molecules designed to hit
target X are often made specifically to look (in 2D) very much
like molecules that are already marketed to modulate X. How-
ever, for off-target predictions, 2D yielded a 37% true positive
rate, but 3D yielded 61%, with the combination yielding 68%. So,
for off-targets, we observed a dramatic improvement over 2D in
the ability of 3D molecular similarity to identify relevant phar-
macological effects.

With respect to the second question, the primary broad ob-
servation is that a drug that shares high 2D and 3D structural
similarity with another drug is likely to have indistinguishable
pharmacological effects at the level of biochemically character-
ized modulation of protein targets. If, on the other hand, a drug
shares little 2D similarity to existing drugs for the same cognate
target but has high 3D similarity, there is greater likelihood to
obtain a novel pharmacological effect. Specifically, drug pairs
with high 3D and high 2D similarity showed identical biochem-
ical targets four times more frequently than did pairs with
high 3D similarity but low 2D similarity. This second case is
particularly important from a design perspective because it repre-
sents a tractable one: where computational approaches making
use of knowledge of existing therapeutics can guide design by

mimicking 3D surface shape and electrostatics. It is exemplified
in Figure 1 with imipramine and citalopram, the latter bringing
both structural novelty and greater target specificity. Shared targets
occurred very rarely when no structural similarity existed be-
tween pairs of molecules: 94% of the time there was no overlap at
all in biological targets, with overlap in primary targets occurring
just 2% of the time.

The work reported here introduces a new methodological
approach for data fusion, demonstrated with 2D and 3D molec-
ular similarity. Given other recent reports of methods for data
fusion and off-target prediction,3�6 the differentiating features of
what can be concluded based upon 2D and 3D molecular
similarity is important to understand. This analysis of roughly
one-third of small molecule drugs with extensively overlapping
pharmacology has implications for both practical and strategic
aspects of molecular design for therapeutic intervention.

’METHODS AND DATA

The following describes themolecular data sets, computational methods,
and specific computational procedures. Data and protocols are available
for download (see http://www.jainlab.org for details).
Molecular Data Sets. Beginning with a set of nearly 1000 drugs for

which we have curated primary and secondary target information, we
identified a set of drugs with overlapping pharmacology. This was done
by considering the drugs as nodes of a graph. Edges existed between pairs
of nodes when the drugs representing each node shared either a primary
or secondary target. The connected subgraph that contains the
molecules shown in Figure 1 consisted of 358 small molecule drugs
(approximately one-third of those marketed in North America), which
formed a connected web through their established biological targets.

The database of annotations of primary and secondary drug targets
has been described previously,1,2 and only the specific salient aspects will
be described here. In particular, all target annotations for each drug have
been established well enough to identify a particular binding site on a
particular protein assembly. So, benzodiazepines and barbiturates, both
of which target the GABAA receptor, are distinguished because they bind
different sites. This is a key distinction between our database and
resources such as DrugBank7 or commercial databases such as MDDR.
DrugBank records annotations at the level of formal names (as we do,
using HUGO8 gene nomenclature conventions), but the distinction
between different sites within an assembly of proteins is not made.
Databases such as MDDR are even less specific in many cases, with
biological activity defined by broad activity classes. This distinction is
crucial because inferences may be drawn based on the comparison of a
molecule to a set of drugs that share an annotation. If the set binds a
single receptor assembly but contains two groups that bind different
sites, inferential power of a similarity-based scheme will be diminished
because one expects a new molecule might be similar to one set but not
both. Machine-learning approaches can rely upon such data because
they can form disjunctive models relating different chemical features to
the same activity class, as was done by Nidhi et al.9 with multicategory
Bayesianmodels. Others have used data in this form to analyze aspects of
the network topology of drugs in the context of biological pathways,
which is also appropriate because the focus is on the relationship of
target modulation to biological effect but does not depend upon site of
action.10

The second important difference between our data set and other
resources is that a distinction is made between primary targets, thought
tomodulate the therapeutically beneficial effects of each drug, and secondary
targets, which mediate pharmacologically relevant (but undesirable) ef-
fects. Drugs may have multiple primary and multiple secondary targets.
Annotation of this distinction varies among public resources, with Drug-
Bank explicitly indicating whether a target is responsible for desirable

Figure 1. Shown are three 5HT reuptake transporter ligands: imipra-
mine (the first in its class), amitriptyline (a fast follow-on compound),
and citalopram (a later generation SSRI). (A) Minor structural differ-
ences between imipramine and amitriptyline (highlighted in red). (B)
Surflex-Sim’s 3D similarity overlay of citalopram (green carbons) and
imipramine (atom colors). The significant regions of similarity within
the molecule pair are illustrated with sticks, green (hydrophobic), blue
and red (polar).
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pharmacological action, butwith resources such as BindingDB11 notmaking
such a distinction (instead focusing on careful curation of biochemical assay
results). One important aspect of our database is that a missing annotation
between a drug and a target cannot be interpreted tomean that the drugdoes
not hit the target. It is simply a lamentable fact that comprehensive biochem-
ical profiling of marketed drugs has not been carried out and made public.

While detailed information regarding a drug’s effects, side-effects,
dosage, and administration is available, systematized data systems that
accurately capture this natural-language information in a form suitable
for query and analysis are only beginning to become available. The SIDER12

resource, for example, links drugs to a formal library of side-effect terms,
but automated extraction of information from free-form documents is
extremely challenging and can limit the utility of such resources for
quantitative performance assessments. In our curation effort, we make
use of resources such as DrugBank and SIDER, but annotations within
our data set are always linked to primary literature, texts that themselves
cite primary literature, or drug package-insert information. Annotations
of primary and secondary targets or of specific side-effects are only made
after direct examination of the evidence by an expert.

The set of 358 drugs identified through the primary and secondary
target graph analysis was especially rich in targeting aminergic GPCRs
(194 drugs) and ion channels and transporters (90) because drugs
within these classes have long been known to have promiscuous and
overlapping activity profiles.13�15 The remaining drugs were roughly
evenly split among pathogenic and human enzyme inhibitors. A total of
67 different biochemical targets were represented among the 358 drugs.
Of the 67 targets, 44 were annotated to be modulated by 5 or more drugs.
Computational Methods. The core computational methods for

computation of molecular similarity have been published and will be
briefly summarized here.
3D Similarity Computation with Surflex-Sim. The Surflex-Sim 3D

molecular similarity method and its use for virtual screening has been
described at length in multiple publications.1,2,16�18 Briefly, the method
uses a molecular similarity function that computes, given two molecules
in specific poses, a value from 0 to 1 that reflects the degree towhich their
molecular surfaces are congruent with respect to both shape and
polarity. The function is computed based on the differences in distances
from observer points surrounding the molecules to the closest points on
their surfaces, including both the closest hydrophobic surface points and
the closest polar surface points. So, two molecules that may have very
different underlying scaffolds may exhibit nearly identical surfaces to the
observer points, which are intended to be analogous to a protein binding
pocket, which also “observes” ligands from the outside.

A command has been added to Surflex-Sim for the specific computa-
tion of “agnostic” similarities between two molecules, called “simcover”.
For each molecule pair A and B, each is sampled to yield a diverse set of
conformers (default 20). Molecule B optimized in terms of both con-
formation and alignment to each of the conformations of A, and scores
are recorded for each such optimization. The same is done for Amatched
to the conformations of B. Both the average bidirectional similarity and
maximum are reported for each pair. For this work, the maximum
similarity was used, but little difference is apparent making use of the
average instead. Scores range from 0.0 to 10.0. Figure 1 illustrates the
optimal mutual superimposition of imipramine and citalopram, which
exhibits excellent concordance in terms of overall surface shape and
correspondence of charge and directionality of the amines. The corre-
sponding similarity score was 8.2.
GSIM-2D. The GSIM method was implemented as a strawman

approach to identify ligand-retrieval problems that are relatively un-
challenging.1 However, due to the presence of structural analogues
within many activity classes, it is frequently effective. Given two molecules
A and B as input, it identifies all subgraphs of molecule A of depth
1, 2, and 3 at each heavy atom. For each subgraph containing 3 or more
heavy atoms, existence of the subgraph is checked in molecule B. If it

exists in molecule B, the score is incremented based on the number of
subgraph atoms and whether the root atom is a carbon or not (non-
carbon rooted subgraphs are weighted 5.0, else 1.0). We repeat the
procedure for molecule B looking for its subgraphs within molecule A.
The two scores are normalized to the interval [0,1] based on the
maximum possible score in each direction. The minimum of the ratio
of number of heavy atoms in molecule A to molecule B and vice versa is
computed, and the overall similarity is the minimum of the two scores
multiplied by the minimum heavy atom ratio. The overall effect is that to
yield high similarity, molecules A and B must be roughly the same size
and have contain subgraphs, especially those rooted at heteroatoms.

Statistical Framework for Unifying 2D and 3D Comparisons. Both
of the similarity approaches just described yield scores in arbitrary
units that have no fundamental physical meaning except at the level of
perfect identity. To compare the approaches directly, or to combine the
computed similarities for a single molecule against multiple molecules,
some normalization is required. Figure 2 shows the inverse cumulative
histogram of similarity scores for imipramine and citalopram computed
against a random set of 1000 screening molecules from the ZINC database,
the same set we have used previously as a decoy set in assessing docking
and similarity virtual screening performance.1,19,20 Both range from
approximately 4.0 to 8.0 overall. The distributions are nearly perfectly
normal, with respective means of 6.6 and 6.1 and respective standard
deviations of 0.58 and 0.43.

Given that the background molecule set was chosen randomly, the
chances that any particular molecule within the 1000 is related to a given
ligand are very small. Consequently, we can make use of these distribu-
tions to estimate p-values for particular levels of similarity for a given
compound. In the comparison shown in Figure 2, the more pessimistic
p-value based on the distributions came from citalopram because it had a

Figure 2. To normalize the similarity score s for a pair of molecules,
x and y, we compare the magnitude of s to the empirically computed
distributions of scores for x and y against a background molecule set.
Here, the molecules are impramine and citalopram, with similarity score
8.2, and similarity distributions are shown in red and green, respectively.
The blue line marks the similarity score between the two. For both
molecules, all background scores are greater than 4.0, but scores sig-
nificantly greater than 6.0 become rare quickly. Imipramine had the
higher proportion of background similarities >8.2, resulting in a p-value
of 0.008.
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larger number of similarities to random molecules that met or exceeded
8.2. The corresponding p-value was 0.008. More generally, given any
molecular similarity method that yields some score S when comparing
molecules A and B, a p-value can be computed by assessing the
proportion of random molecules that have equal or greater similarity to S
than to each of A and B and then taking the larger of the two proportions.

Figure 3 shows the relationship between raw similarity scores and p-
values for both the 2D and 3D computations. Note that even within
narrow bands of numerical similarity, both for 2D and 3D, very different
p-values obtain. Between 3D similarity of 7.4 and 7.6, we observed
p-values between 0.00 and 0.45, corresponding to highly improbable and
clearly significant all the way to clearly random. The relationship of
molecular structure to changes in distributional character will be discussed
later, but the salient feature from a computational perspective is that
while there is a global relationship between a similarity score and p-value
irrespective of the molecule under consideration, there is enough
variability to warrant normalization on a per-molecule basis. Because
the specific p-values will depend on the exact composition of the decoy
set used, we have chosen to bin the values, which also leads to a simple
means to combinemultiple p-values into a single value for the purpose of
data fusion.

Given some new molecule and a collection of molecules known to
share some activity, we wish to be able to combine similarities to the set
of knowns, potentially using multiple similarity methods, into a single
value that reflects the combined information. We make use of the multi-
nomial distribution for this purpose, as shown in Figure 4. The basic
idea is simple. Given some set of k different outcomes, each with asso-
ciated prior probability pi, and counts of each outcome xi, M gives the

probability of observing the set of outcomes that gave rise to the counts
observed. For application to the molecular data fusion problem, because
we have converted each similarity score into a probability, we simply
count the number of occurrences within each p-value bin, and the prior
probability of each is simply the bin size itself. Wemake the computation
using the computed probabilities for a set of similarities and using the
converse probabilities, which yields symmetrical treatment for high
similarity and for high dissimilarity. The final step in computing
the score S is taking the log of the ratio of the two probabilities M
and M* and inverting the sign. So, in a case where the similarities of a
particular molecule to a collection that share some annotation are low, S
will be high. In a case where they are evenly spread from low to high, S
will be zero. And if similarity values skew low, S will be negative.

The interpretation of a log-odds score of 2.0 is that it is 100 times
more likely that the molecule in question shares high similarity with the
annotated set of molecules than that it does not. To the extent that the
similarity approaches that underpin the probability computations are
related to biological effects, the log-odds score S may be used as a
predictor of such effects (see Figure 5 for an example).
Computational Procedures. Detailed scripts for generating the

results presented here are available in the data archive associated with
this paper. Briefly, all 3D molecular similarity computations between
drugs were made using default parameters for Surflex-Sim: sf-sim simcover
drug-list drug-list log-file-3d. Similarly, all 2D molecular similarity
computations between drugs were made as follows: sf-sim gsimcover
drug-list drug-list log-file-2d. To compute the background distributions
to normalize the similarity values, the analogous computations were
done using the 1000molecule ZINC decoy set: sf-sim [g]simcover drug-
list zinc-list log-file-[3d][2d]-norm.

’RESULTS AND DISCUSSION

The primary results of the study fall into two basic categories.
The first relate to what can be predicted about a compound’s
potential biological effects based purely on molecular similarity
and whether the use of 2D or 3D similarity methods influences
the types of inferences that can be made. The second involve a
census of the pharmacological congruence between pairs of
drugs, where the pairs have been defined based upon the

Figure 3. The top plots show the relationship between 2D and 3D
similarity scores and corresponding p-values for all 63903 drug pairs.
Higher 2D and 3D similarity scores generally lead to low p-values
(i.e., are more significant). However, even within narrow ranges of raw
similarity scores, the p-values varied substantially. The bottom plots
show histograms of the p-values for 2D similarity scores between 0.09
and 0.13, and 3D similarity scores between 7.4 and 7.6. Numerically
close similarity scores can give rise to very different p-values depending
on the molecules in question. The labels x1�6 identify different qualitative
bins of significance at p-value boundaries of 0.01, 0.05, 0.1, 0.2, and 0.5
(see Figure 4 for their use in the multinomial distribution computation).

Figure 4. We compute a single score S to reflect the likelihood that a
test molecule shares an annotation with a set ofmolecules known to have
a particular activity. The similarity p-values are determined for the test
molecule the set of known ligands. We compute the likelihood that the
observed set of similarity p-values is extreme using the multinomial
distribution. The p-values for the set of similarity comparisons are
binned (top), and the bin counts are computed (x1�6). M is the
likelihood of having observed such a set of p-values, andM* is the same
computation using the converse probabilities. The Log Odds score S
combines the two. Positive S indicates that it is more likely that the
molecule in question shares the annotation with the ligand set than that
it does not.
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characteristics of their 2D and 3D similarities. The principal
observation from the first category is that both 2D and 3D
similarity (and their combination) are able to predict biological
targets, but 3D similarity is more likely to identify effects that are
not obvious from knowledge of pre-existing molecular pharma-
cology. The principal observation from the second category is
that molecules sharing high similarity in both a 2D and 3D sense
are much more likely to exhibit highly similar target profiles than
those molecules that exhibit topological variation but retain high
3D similarity.
Predicting On- and Off-Target Effects. For each of the 358

drugs (see Methods and Data), we asked what their computed
log-odds score was for each of the 44 targets that had 5 or more
annotated drugs as either primary or secondary modulators to
serve as positive examples. Figure 6 shows the results of the com-
putation for both primary targets (top) and secondary targets
(bottom). Nearly all computed log-odds scores were positive
(about 90% for all methods), indicating greater similarity than

dissimilarity to example sets of compounds for either 2D, 3D, or
2D + 3D log-odds computations. This was the desired result
because the definitions of targets differentiated between different
binding sites on the same protein assemblies, so ligands within a
given set of modulators were known to bind competitively.
For primary target predictions, performance of the methods

was 2D < 3D < 2D + 3D, but the degree of improvement in
moving beyond 2D ranged from 9 percentage points at a log-
odds threshold of 6.0�15 percentage points at a log-odds threshold
of 20.0. The added value of combining the two similarity
approaches yielded typical gains of 10 percentage points over a
broad range of log-odds values. At a threshold of 6.0, the
combination of 2D + 3D similarity methods was able to identify
a majority (59%) of all primary target annotations. As mentioned
earlier, and as we have previously reported, the relatively limited
gains of 3D over 2D are explained directly by human design bias.1

The new observation here is that the effect holds in the forward
predictive direction: when one has a set of ligands with known

Figure 5. Log Odds calculation example. To test if a new molecule, in this case azatadine, is a ligand of a target of interest such as the histamine H1
receptor, we compute 2D and 3D similarity p-values for azatadine to known ligands of the target. Shown above are the 2D structures, 3D similarity
overlays, and corresponding p-values of azatadine with three ligands. To calculate the LogOdds, similarity p-values were determined for the complete list
of 30 histamine receptor ligands shown on the right. Both the 2D and 3D Log Odds scores are high and indicate a much higher probability that azatadine
binds the histamine H1 receptor rather than it does not.
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activity, 2D similarityworks quitewell in assigning primary targets to
newmolecules. For secondary target prediction, the same qualitative
performance was observed, but the performance gains for 3D
over 2Dwere 24 percentage points (log-odds threshold of 6.0) to
30 points or greater for log-odds thresholds of 10.0 or more. The

combination of methods yielded only a marginal gain, as with
primary targets, of typically 10 percentage points or less, identify-
ing 68% of the secondary targets at a log-odds threshold of 6.0.
The highlighted circles fromFigure 6 (bottom) provide examples

of specific secondary target predictions shown in Figures 7, 8, and
9. Figure 7 shows the case of promethazine, whose primary target
is theH1 receptor, andwhose off-targets includemultiple dopamine
receptor subtypes. The drugs promazine and trifluoperazine are
examples of the degree of structural concordance that can occur,
allowing for predictions of targets by essentially any method for
computing molecular similarity. For these two molecules com-
pared to promethazine, both 2D and 3D approaches produced p-
values less than 0.01 (the most extreme bin from Figure 4), and
combined with p-values from 33 other dopamine D2 receptor
drug comparisons, yielded log-odds scores of 10, 15, and 22 for
2D, 3D, and 2D + 3D, respectively. These drugs were all syn-
thesized as part of the medicinal investigation of what were then

Figure 6. Proportion of drug targets correctly predicted. These plots
indicate the proportion of drug targets correctly predicted by the three
similarity methods at various Log Odds thresholds. Using 2D (red line),
3D (green line), or a combination of the similarity methods (blue line),
we determined the Log Odds for both primary and secondary targets of
the 358 drug set against 67 targets. At a LogOdds threshold of 6.0 (black
vertical line), prediction success rates for primary targets for 2D, 3D, and
combination were 37%, 46%, and 59%, respectively. For secondary
targets, success rates were 37%, 61%, and 68%. Examples will be shown
of predictions highlighted by the gray circles in the bottom plot.

Figure 7. A 2D similarity method can sometimes correctly predict a
target. Shown above are the 2D structures and 3D similarity overlays for
the drug promethazine (a histamine H1 receptor antagonist) compared
to two dopamine receptor antagonists, promazine and trifluoperazine.
Although promethazine is prescribed as an antihistamine (Phenergan),
it is a branched derivative of the antipsychotic phenothiazines and is
known to have about 1/10* the dopamine receptor antagonistic activity.
Our 2D method alone was sufficient to identify the dopamine receptors
as an off-target of promethazine. As shown above, the Log Odds
predictions that promethazine is a dopamine D2 receptor ligand were
2D = 10, 3D = 15, and the combination of 2D and 3D= 22. Note that at a
log-odds score of 10, just 20% of secondary targets are identified by
2D alone, with 50% and 60% identified by 3D and the combination of
2D + 3D, respectively.
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termed “anti-histaminic phenothiazines,”many of which had anti-
psychotic properties.21 These properties were due to a host of
effects on different brain receptors but are thought to primarily
derive from modulation of dopamine receptors of multiple
subtypes. Relatively subtle changes in structure (e.g., from proma-
zine to promethazine) yield sufficient different in target potencies
to shift primary indication from antipsychotic for promazine to
antihistamine for promethazine. However, the shifts in potency
are not so dramatic as to abrogate the multiple target effects
entirely.
Figure 8 shows another example of a phenothiazine antipsy-

chotic whose primary effects derive from dopamine receptor
modulation. Here, however, some of the more significant side-
effects are those modulated by muscarinic antagonism, including
dry-mouth and blurred vision. In this case, the 2D log-odds was
just 3. Whereas 2D similarity did not produce a low p-value when
comparing thioridazine to either oxybutynin or diphenidol (two
potent antimuscarinics), 3D similarity yielded much lower p-values.
Coupled with those derived from comparisons to 61 other M1

drugs, the 3D log-odds score was 39, allowing very confident
assignment of muscarinic targeting to thioridazine. In this case,
the addition of 2D similarity to 3D produced a slight reduction in
computed log-odds score. Log-odds scores are not additive;
additional observations affect the combinatorics such that a
collection of p-values which alone yield a marginally positive
log-odds score may diminish the score derived from a collection
of p-values that produced a high score.
Figure 9 shows a case where the combination of 2D and 3D

similarity produced a log-odds score greater than 6.0 where
neither alone met that threshold. Nefazodone yields its primary
effects throughmodulation of multiple reuptake transporters, but
it has a significant side-effect of postural hypotension deriving
from modulation of α-adrenergic receptors. In this case, for
α-1A receptor, 2D alone yielded log-odds of 2.4, with 3D yielding
5.5. Comparisons to dapiprazole and doxazosin produced no
extreme p-values using either 2D or 3D, but all four scores leaned
in favor of similarity to nefazodone. Along with 50 other drug
comparisons, the combined log-odds for adrenergic effects
was 6.5.

Figure 8. Our 3D similarity method more accurately predicts off-
targets. Shown above are the 2D structures and 3D similarity overlays
for the drug thioridazine (a dopamine receptor antagonist) compared to
two muscarinic receptor antagonists, oxybutinin and diphenidol. Although
thioridazine is prescribed as an antipsychotic (Mellaril), it is well-known
to have antimuscarinic effects such as dry-mouth and blurred vision. Our
2D method did not identify the muscarinic receptors as an off-target of
thioridazine (Log Odds for M1 = 3). In contrast, our 3D method
strongly predicted the off-target, with an M1 Log Odds score approach-
ing 40. Whereas over 10% of secondary target annotations are captured
at this level by 3D similarity, none are captured with such a high level of
confidence by 2D.

Figure 9. A combination of 2D and 3D similarity methods makes a
small improvement over 3D alone. Shown above are the 2D structures
and 3D similarity overlays for the drug nefazodone (a 5HT reuptake
transporter inhibitor) compared to two α1 adrenergic receptor antago-
nists, dapiprazole and doxazosin. Although nefazodone is prescribed as
an antidepressant (Serzone), it causes postural hypotension, a known
side effect ofα1 blockers. Neither the 2D or 3Dmethods alone identified
the α1 adrenergic receptors as an off-target of nefazodone at the
conservative threshold of 6.0 (Log Odds for α lA = 2.4 and 5.5,
respectively). In contrast, a combination of the 2D and 3D methods
predicted the off-target. Close to 70% of all off-targets were correctly
identified at Log Odds = 6.0 using the combination approach.
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Excess Targets: False Positive Predictions. The framework
we have developed allows for the combination of multiple
sources of information to yield a single scalar value associated
with a class prediction. In such a situation, it is both customary
and desirable to make an estimate not only of true positive success
rates but also of the corresponding false positive rates (e.g., with a
receiver-operator characteristic (ROC) analysis). Here, we were
able to identify primary and secondary targets about 60�70% of
the time at a combination log-odds score threshold of 6.0. However,
at that threshold, there are targets suggested for drugs for which
no annotation is known. At a log-odds threshold yielding a true
positive rate of 60%, the typical ratio of excess predicted targets
relative to the total number of known primary and secondary
targets was roughly 2�3, depending on the class of drugs
involved. Larger numbers of excess targets were observed for
drugs whose primary targets were among the aminergic GPCRs.
The difficulty in interpreting this observation is that public data
do not exist that systematically profile small molecule drugs in
biochemical assays.
As a surrogate for biochemical data in unknown drug�target

relationships, we manually assessed package insert and related
information tomake a determination of whether muscarinic side-
effects were both present and drug-related. These included dry-
mouth, urinary retention, blurred vision, drowsiness, mydriasis,
and other effects. For the 358 drugs where we had no formal
annotations of muscarinic target effects, which totaled 294 com-
pounds, we surveyed a random subset of slightly more than half
of them (180 drugs total), resulting in 84 with muscarinic side-
effects and 96 without. We also surveyed 29 of the 64 drugs that
we had previously annotated as binding muscarinic receptors. All
29 of the previously annotated muscarinic modulators showed
clear, drug-related side-effects (90% exhibited dry mouth effects,
69% drowsiness, and a majority also showed urinary retention,
blurred vision, and dizziness). For the 64 drugs with annotated
muscarinic target effects, the mean log-odds score for muscarinic
receptors was 25.8, with 92% scoring higher than 6.0.
Overall, using the side-effect assessments as a binary class label

for the 180 surveyed drugs that had not been annotated as muscarinic
modulators, the log-odds score produced an ROC area of 0.88
(95% confidence interval of 0.83�0.93). The enrichment for
drugs with muscarinic side-effects among the top 1% log-odds
scores was 19-fold. Of the surveyed drugs, 90% of those with a
log-odds score of 6.0 or greater showed classic muscarinic side-
effects (38/42 surveyed drugs). Even at a threshold of just 2.0,
85% were positive (55/65). Above a threshold of 26.0, all
surveyed drugs (16 total) showed such side-effects. Conversely,
below a log-odds threshold of �6.0, just 6% (3/47 surveyed)
showed potentially muscarinic effects. Below a threshold of�16.0,
no drugs showed such effects (26 total).
Three examples of drugs that had lacked muscarinic annota-

tions are particularly informative. Amoxapine, an antidepressant
working primarily through the norepinephrine reuptake trans-
porter, received a log-odds score of 4.8. Prescribing information
indicated that the most frequent side-effects included dry mouth,
constipation, and blurred vision. It has also been shown bio-
chemically to bind muscarinic receptors.22�24 Orphenadrine, an
antihistamine prescribed to relieve muscular pain, received a
score of 42.9. Prescribing information indicates that “dryness of
the mouth is usually the first adverse effect to appear.” The drug
has been shown to antagonize muscarinic receptors with a Ki of
100 nM.25 Mesoridazine received a score of 37.1, had clear
muscarinic side-effects, and also has aKi of 69 nM against theM1

receptor.22 Notably, it received a log-odds score of 6.4 against the
HERG potassium channel, although it had not been annotated
for such activity. It was withdrawn from the U.S. market in 2004
due to HERG-mediated cardiac side-effects.26

This survey of muscarinic side-effects among previously un-
annotated drugs makes three points. First, the empty cells of the
annotationmatrix of drug to target interactions cannot be thought of
as indicating no effect. Second, the log-odds scores were both
sensitive and specific with respect to muscarinic target annota-
tion. Third, the lack of systematic profiling of drugs for which
ample human data exist represents a large gap in our knowledge.
Manual curation of this depth requires on the order of 30 min to
1 h per drug per side-effect, after establishing the relationship
between a particular target and the relevant human pharmacol-
ogy down to specific terms and variations. We are exploring
automated means to consider databases of side-effect terms and
their relationship to predicted on- and off-targets in order to carry
out a more comprehensive study.
Approaches for semiautomatic curation such as SIDER12 are

challenged by variations in language such as “dryness of the
mouth” instead of “dry mouth.” The MedDRA dictionary,27 for
example, lists the latter as a defined medical term (but not the
former), and relatively sophisticated language parsing is required
to relate the two together. In the case of orphenadrine, one of the
84 drugs with clear muscarinic side-effects, SIDERmisses the dry
mouth effect, which is clinically the most prominent. Even with
much more extensive synonym mapping, cases exist where side-
effects are listed as not being present or are listed as being present
but then dispensed with as not different from placebo, which is
challenging to assess without expert manual curation.
Relationship to Other Methods. Two relatively recent ap-

proaches to data fusion involving molecular similarity are parti-
cularly relevant to our log-odds scoring approach. Muchmore
andHadjuk’s belief theory approach5 and the similarity ensemble
approach (SEA)3 introduced by Shoichet’s group both offer the
means to make predictions about a given molecule’s activity
based upon its relationships to other molecules.
The belief theory approachmakes use of Hooper’s Rule, which

was devised in the late 1600s by George Hooper, predating the
Bayesian belief approaches later popularized by Laplace and his
adherents.28 The rule was devised to address the credibility of a
report of some fact when simultaneously attested byN reporters,
each with credibility p (high p implying high credibility). This
rule formalizes the notion that multiple partially credible sources
strengthen one another’s credibility. In the original report applying
this rule to predictions of molecular activity based on similarity,
the definitions of positive pairs of molecules and negative pairs
differed from the current work, with molecule pairs considered as
positive sharing not only a target but similar potency against the
target. Similarity descriptors were converted into probability
functions by considering a large set of positive and negative pairs
and counting the number of times that a pair with some level of
similarity was a positive example. Evidence from multiple simi-
larity methods concerning pairs of molecules was combined using
Hooper’s Rule. A key distinction with our log-odds approach is
that the belief theory formalism always increases belief, no matter
how marginal an additional source’s belief may be. In the log-
odds approach, N very low p-values coupled with N symmetri-
cally high p-values yield a log-odds of associating a target to a
ligand of zero. The belief theory approach treats the cases of very
low similarity as attesting in favor of the proposition that the
query molecule will hit the target in question, but with low belief.
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One might argue that the interpretation of such a value is more
akin to a reporter attesting against a fact rather than giving it
marginal support, making the application of Hooper’s Rule a
matter of empirical choice rather than purely logical.
The SEA method3 uses a framework for estimating probabil-

ities that is similar to that used for comparing sequence similarity
of proteins, with likelihoods represented as E-values (a p-value
multiplied by a large, arbitrary constant representing a database
size). SEA makes use of 2D topological similarity to compute
pairwise similarities between sets of molecules. By choosing a
threshold below which to ignore similarity values, the pairwise
sum of all similarities between two sets of unrelated molecules
was shown to fit an extreme value distribution. So, to compare
one (or several) molecules against a set with known activity, the
magnitude of the raw similarity set comparison score is compared
with that expected from unrelated sets, a probability is derived,
and an E-value is produced. In contrast with the belief theory
approach, in this formulation, the presence of poor similarity
values yields poorer E-values.
Both the belief theory and SEA approaches treat raw similarity

values as being equivalent regardless of the specific molecules or
molecule sets in question. Our observation of both the GSIM and
Surflex-Sim methods, which we believe will also hold for other
methods such as ROCS29 (3D) and Daylight fingerprint-based
similarity30 (2D), is that the probability of observing some raw
value varies depending on the particular structure involved. As
seen in Figure 3, p-values associated with narrow similarity ranges
included extremely significant values as well as clearly random
ones. For similar molecules, the distributions of observed simila-
rities to the background set tend to be close (see Figure 2 for an
example). However, for a small and simple molecule, such as
acetaminophen, the required similarity score to reach a p-value of
0.01 is higher (8.3) than that for more complex molecules, such
as azithromycin, where the required similarity is lower (5.8).
Clearly, the particular values depend on the composition of the
background molecule set, but we do not believe it is possible to
construct a nondegenerate background set against which all mol-
ecules will exhibit congruent similarity distributions. By assessing
differences in likelihood of observing different similarity levels
within the context of each specific molecule pair, it is likely that
the associated log-odds scores better reflect the underlying
similarity relationships than approaches that take a coarser-
grained approach. Of course, it is also possible to make use of
global similarity distributions with the log-odds approach, but it
is difficult to justify doing so.
Quantitative Comparison to Other Approaches. The mus-

carinic side-effect prediction task offers the opportunity for direct
comparison of our approach to belief theory and to SEA. We
computed joint beliefs regarding muscarinic activity for the
180 drugs and used these beliefs to assess ROC area. Recall
that the 180 drug set consisted of 86 positives and 94 negatives
based on the presence of side-effects, with similarities for each
computed against 64 known muscarinic modulating drugs.
For belief theory, the formula for combining evidence is given
by B = 1� (1� B1)*(1� B2)*...*(1� BN), where B1...BN are the
separate beliefs associated with the assertion that a given
molecule has a particular activity. The most direct comparison
to Muchmore and Hadjuk’s formulation is made by setting each
Bi = (1 � pi), with each pi derived from the 3D similarity
computations used above for the log-odds approach. Using a
single global distribution to obtain p-values from the similarities,
we observed an ROC area of 0.61 ( 0.05 (95% confidence

interval), which was significantly worse than for the log-odds
approach (0.88 ( 0.05). Using empirically determined p-values
for each molecular comparison (as the log-odds approach does),
the performance improved to 0.72 ( 0.05 but was still signifi-
cantly worse than the log-odds result.
Note, however, that the ROC area comparisons are somewhat

misleading due to the degeneracy in the belief theory evidence
rule. If a single belief is 1.0 (p-value of 0.0), the overall joint belief
will be 1.0 no matter what the other belief values may be. For the
muscarinic side-effect prediction task, this results in a large
proportion of joint beliefs for the 180 drugs to be exactly 1.0.
This degeneracy stems from the definition of Hooper’s Rule, but
its effect can be ameliorated by scaling down all beliefs by a
constant factor. The best result we were able to obtain for belief
theory was an ROC area of 0.85( 0.05 (nominally indistinguish-
able from log-odds), using B = 0.5(1 � p), with empirically
determined p-values for each pairwise molecular comparison.
Even with this augmentation, there were a significant number of
tied values of high belief, covering nearly 10% of the 180 ligands.
The maximal enrichment for belief theory, in this most favorable
(and artificial) formulation, was 6.4, corresponding to a true-
positive (TP) rate of 55% and false-positive (FP) rate of 9%.
Much better early enrichment was possible with the log-odds
approach because there is no multiplicative degeneracy involving
strict interpretation of p-values. We obtained maximal enrichment
of 20-fold at a false-positive rate of just 1% using 3D log-odds.
For the SEA approach, a direct performance comparison (with

the same set of 64 annotated muscarinic ligands used here) was
not possible using the web-based SEA interface (sea.bkslab.org).
However, the annotations underpinning SEA predictions are far
more extensive than those used here, with over 1000 ligands
having muscarinic target activity (including exact matches for
50% of the 64 used here, and close analogues for over 85%). We
queried the 180 drugs for SEA predictions, which were reported
for target predictions with E-values <10.0 (recall that such
E-values are generally thought to be significant when less than
10�10.0). For each drug, we recorded the most extreme E-values
against any muscarinic subtype. Those molecules with no pre-
dicted muscarinic targets were assigned an E-value of 100.0. The
corresponding ROC area was 0.57 ( 0.05, significantly worse
than the log-odds approach. As with the belief theory approach,
interpretation of ROC areas is problematic due to tied values.
With SEA, the tied values were at the low end of the ranking
because the majority of drugs received no muscarinic target
predictions at all. Maximal enrichment for the SEA approach
occurred within the nontied value range at an E-value cutoff of
10�1.2, allowing for a direct comparison. Maximal enrichment
was 3.8-fold. This corresponded to an FP rate of 4% and a TP rate
of 15%. Three direct comparisons between the log-odds
approach and SEA are particularly meaningful: (1) the maximal
enrichment, which was 20-fold for log-odds vs 4-fold for SEA,
(2) corresponding TP rates at the same 4% FP rate, 48% vs 15%,
respectively, and (3) corresponding FP rates at the same 15%
TP rate, 0% vs 4%.
We believe that the inherent degeneracy in Hooper’s rule

favoring high beliefs makes it inappropriate to use in a situation
where belief values cannot be fully trusted. Given a single spurious
annotation or a single similarity method yielding an inappropri-
ately high confidence in a single molecular comparison, belief
theory will produce incorrectly high belief in a prediction. In the
case of SEA, we believe that the fundamental divergence of 2D
similarity methods from the direct biophysical underpinnings of
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molecular activity limit the degree to which one can identify
surprising off-target effects with high specificity.
Off-Target Prediction: Detection of Surprising Effects.The

distinctions among different methods for data fusion, while clearly
important, are not as critical as the distinctions among similarity
methods that provide information to the data fusion computa-
tions themselves. Those similarity approaches whose scores are
derived from directly relevant biophysical features (like surface
shape and electrostatics) will yield different inferences than those
that are less directly related to physical characteristics but which
may be closely related to design ancestry. Two particularly telling
examples of the distinction involve methadone and imipramine,
compounds whose long history allows us to understand not only
what the compounds do pharmacologically but also why they
were synthesized and tested to begin with.
Figure 10 illustrates the historic context of the synthesis and

testing of methadone and imipramine. Methadone was synthe-
sized duringWWII as part of an effort to develop anticholinergics
for use as nerve gas antidotes21 due to the limited availability of
the natural product atropine (nerve gas results in an accumula-
tion of acetylcholine by inhibition of acetylcholinesterase, leading
to spasm and death). On testing in animals, the surprising finding
was that methadone (and demerol as well) produced the Straub-
tail effect, indicative of opioid analgesic activity. In a similar
serendipitous story,31 the compound G-22,355, which became
known as imipramine, was selected for testing as an antipsychotic.
Roland Kuhn, a psychiatrist at the Cantonal Mental Hospital of
M€unsterlingen, and Robert Domenjoz, a medicinal chemist at Geigy
Pharmaceuticals, identified it as being structurally similar to chlor-
promazine. Kuhn tested the compoundwith no success on psychotic
patients, but prior to returning the supply, it was tested on a small
number of depressive patients. The effects were sufficiently dramatic
after just three patients to suggest the compound had unique
properties and warranted further testing. Imipramine established a
new class of drugs,32 which ultimately came to be understood as
acting primarily through the serotonin reuptake transporter.

Methadone’s surprising on-target activity could have been
predicted by the 3D log-odds approach based on the structures of
morphinan-based opioids such as hydrocodone and codeine that
had been identified well beforemethadone’s synthesis. These had
very low p-values using the Surflex-Sim approach. For hydro-
codone, codeine, morphine, and oxycodone, the 3D p-values
were, respectively, 0.007, 0.048, 0.057, and 0.060. The 2D GSIM
p-values were, respectively, 0.35, 0.35, 0.35, and 0.63. Clearly, to
predict the opioid activity, 3D structural comparisons would be
required. The case of imipramine cannot be considered in this
pseudoprospective fashion because its synthesis and testing led
subsequently to the identification of both its primary biological
mechanism of action as well as to the line of chemical inquiry that
produced selective agents such as citalopram. However, if we
consider citalopram’s relationship to the eight serotonin-reup-
take inhibitors that predated it from our set of 358 (imipramine,
clomipramine, trimipramine, amitriptyline, trazodone, paroxetine,
fluvoxamine, and fluoxetine), we see that 3D similarity yielded
p-values e0.05 for all eight, but 2D similarity yielded p-values
e0.05 for only three.
Overall, for known secondary targets (most of which can be

considered surprises to some degree), the 3D log-odds scores
were, on average, 9.3 log units higher than the 2D scores. For
known primary targets (where relatively fewer can be considered
surprises), the difference was 4.0 in favor of 3D log-odds over 2D.
Relationships that can be deduced through 3D molecular simi-
larity include those that genuinely are surprising, not just those
that would be obvious to someone knowledgeable of molecular
pharmacology in a particular area.
Recent Off-Target Predictions.Given these anecdotes, there

clearly can be differences between the types of inferences that can
be drawn from 2D and 3D molecular similarity methods. The
supporting information behind predictions such as these is impor-
tant because the natural application of computational methods
for predicting off-target effects is to identify those that someone
intimately involved in a particular pharmacological area could not
reasonably guess. What we have seen is that in cases where
we are able to understand both the reasoning behind molecular
design and the serendipitous discoveries about activity, it is the
province of 2D methods to uncover effects related to historical
reasoning that anticipated the effects but 3Dmethods to also find the
surprises.
In 2006, we observed that methadone, based on 3Dmolecular

similarity, cosegregated with muscarinic and histamine receptor
antagonists, echoing its genesis more than 60 years earlier.2 We
did not show biochemically that methadone was a muscarinic
antagonist, but we pointed out that its side-effects included those
associated with muscarinic antagonism: dry mouth, urinary reten-
tion, sweating, and reduced bowel motility. Subsequently, a
biochemical assay showed that methadone has a Ki of 1.0 μM
for the M3 receptor.3 Using Surflex-Sim 3D similarity, metha-
done could be properly associated with the μ opioid receptor.
What our study lacked was the perspective that 2D similarity
provides as to what should have been considered obvious in this
case: the basic reasoning behind synthesis of methadone was
topological analogy to atropine and its analogues. Keiser et al.3

directly showed that the SEA 2D similarity approach could reveal
the off-target muscarinic effect of methadone (but not the on-
target opioid effect). The 2D SEA approach successfully detected
the association between methadone and the muscarinic receptor
because attempts to create antimuscarinics from 2D analogy to
atropine eventually succeeded, resulting in compounds such as

Figure 10. The design intention and surprising effects of some older
drugs are known. Methadone and demerol were synthesized in an effort
to make synthetically scalable anticholinergics as nerve gas antidotes by
the Nazis in WWII. Their opioid effects were discovered serendipitously
in a live cat assay. Imipramine was synthesized as an analogue of other
tricyclic antipsychotics. Its surprising antidepressive effects were dis-
covered through direct human experimentation, later identified to result
from inhibition of the serotonin reuptake transporter. Using 3D similarity,
one can correctly associate the surprising target effects with the drugs, but
using 2D similarity, one cannot.
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adiphenine, diphenidol, tolterodine, oxybutynin, dicyclomine,
and many others with a clear 2D similarity to methadone.
We observed this same pattern involving scaffold ancestry in a

recently published application of the SEA approach.4 In it, a set of
predictions were correctly made for four drugs, where each of the
predicted off-targets was unrelated by sequence or structure to
the primary targets of the drugs. Figure 11 shows two of the
drugs, primary canonical targets, predicted off-targets, and an
example of a previously published33�38 high-affinity ligand of
each off-target protein that shares a scaffold with each drug. In
each case, the scaffold in question had been actively probed in
medicinal chemistry exercises for the predicted off-target effect.
The specificity of the highlighted scaffold for the off-target in
question among CHEMBL39 annotations was over 40-fold for
tetrabenazine, and the highlighted scaffold for the delavirdine
prediction was over 1000-fold greater for H4 compared with any
other target. Two other sets of predictions were made on drugs
which target the NMDA receptor: ifenprodil and a simple analogue
thereof. The predicted and verified activities included reuptake
transporters (5HTT and NET), opioid receptors (μ and k), and
theD4 receptor. These activities shared the same pattern as those
in Figure 11 with respect to the presence of previously published
high-affinity analogues against the predicted targets (data not
shown). The more general point relates to experimental molec-
ular pharmacology. In 1991, ifenprodil was investigated for
activity in addition to the NMDA and adrenergic ones already
known,15 and potent activity was reported for the σ and 5HT1a
receptors. Established pharmacological crosstalk among ligands
of σ receptors and the opioid μ,δ, andk subtypes13,40 anticipated
weak opioid activities for ifenprodil and its analogue. Crosstalk
between ligands of the adrenergic and 5HT receptors and
reuptake transporters14 anticipated these activities as well. Com-
plex specificity patterns across multiple reuptake transporters
and multiple receptor subtypes of σ, NMDA, opioid, adrenergic,
and serotonin have been probed for many years.
The presence of many published ligand/target relationships pro-

vides data for computational inferences that parallel pharmacological

knowledge. For predictions to have high practical utility, they must
identify off-target effects for drugs automatically, reliably, and
with high specificity, and ideally they must identify effects that

Figure 11. At left, two drugs are shown for which off-targets were identified through application of the SEA 2D similarity approach. Potencies for off-
target effects were much weaker than for the on-target drug effects (shown below the drug names). The off-target effects were also much weaker than for
primary modulators of the predicted targets. Molecular series containing common core substructures had been actively investigated as desirable scaffolds
for the predicted targets.

Figure 12. Drug pairs were segregated based on 2D and 3D similarity p-
values into the 4 quadrants shown above (number of pairs per quadrant
shown in parentheses). Conservative structural modifications are much
more likely to yield highly similar pharmacology. Drug pairs with
high2D/high3D similarity are about 4 times more likely to exhibit
identical pharmacology relative to drug pairs with low2D/high3D
similarity. Also, drug pairs with overlapping primary targets are 2 times
more likely to have high2D/high3D similarity compared to those with
low2D/high3D similarity. As expected, most drug pairs with high2D/
low3D or low2D/low3D similarity have no target overlap.
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are truly surprising. Evaluating computational methods is chal-
lenging because even nominally prospective predictions can be
driven by the evolutionary history of drugs. One can “predict” an
activity for a ligand based on the fact that someone thought
of the activity in connection with the ligand’s scaffold before,
causing analogues to be developed and probed for that activity.
In such cases, tools that ferret out such information will be
useful only to the extent that they are either more effective
than someone knowledgeable in molecular pharmacology or
that they are facile to apply automatically and have a low rate of
false predictions. Developers of predictive methods should
disclose the reasons why a methodmade a particular prediction.
Usually this requires only the provision of typical molecular
structures that underpinned an inference. Special care must be
taken in the case of methods for predicting off-target effects
because the goal is to identify those effects that might otherwise
derail a clinical candidate, and it is reasonable to believe that the
more obvious potential effects would have been extensively
investigated.
Relationship of Structural Novelty to Pharmacology.From

the foregoing discussion and our previous work,1 it is clear that
the drug design process shows a clear component of design relating
directly to topological reasoning about the biological activity

expected from a particular molecular structure. It is also clear that
clinically relevant surprises occur both with respect to primary
targets as well as secondary ones. To assess the degree to which
chemical structural novelty was directly related to novelty in
pharmacological effect, we computed the pairwise similarity of all
358 drugs and split them into four groups: pairs with high 2D and
high 3D similarity, low 2D but high 3D, low 3D but high 2D, and
low 2D and low 3D. Figure 12 shows the proportions of molecule
pairs within each group that had identical annotated targets (blue
bars), overlapping primary targets but including some differences
as to overall target effects (orange), nonoverlapping primary
targets but some overlap among secondary targets (green), and
completely nonoverlapping targets (purple). It is important to
understand that the annotation of target effects include only
those where sufficient experimentation exists in order to localize
an effect to a specific binding site on a particular protein assembly.
So, as we saw above with the analysis of muscarinic side-effects,
many unannotated drug�target relationships may well exist.
In the case of high 3D and high 2D similarity (upper right),

nearly 80% of drug pairs show some degree of target overlap, with
nearly 40% having identical targets and nearly 70% sharing
primary targets. With the same level of 3D similarity but with
low 2D similarity (upper left), slightly less than half of the drugs

Figure 13. Imipramine and amitriptyline differ by only 1 atom, share identical on- and off-targets, and were approved as antidepressants in 1959 and
1961, respectively. In contrast, citalopram has significantly lower 2D similarity to imipramine, has fewer off-targets, and thus a more favorable
pharmacological profile. Citalopram was approved as an antidepressant in 1998. For bupropion and ketorolac, the high 2D similarity is apparent on
inspection, leading to a very low 2D p-value, but the 3D similarity correctly suggests that the compounds are unrelated in effects. Albuterol and
imipramine are aminergic GPCR ligands with no target overlap and very low similarity. Sildenafil and tadalafil are a rare drug pair within the low 2D/3D
quadrant that share a primary target (PDE5).
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share targets, and just 10% have identical targets. The converse
case (high 2D, low 3D, bottom right) produces somewhat similar
proportions but with 70% having no common targets. As expec-
ted, molecules sharing no molecular similarity shared no targets
nearly 95% of the time. Figure 13 shows examples from each
quadrant. The case of imipramine and its fast follow-on com-
pound amitriptyline fell into the identical target set; indeed, they
have very little to differentiate them in terms of pharmacology
even beyond specific targets.41 However, the structural creativity
shown by citalopram relative to imipramine (high 3D, low 2D)
produced much more specificity with respect to the serotonin
reuptake transporter, and citalopram along with other SSRIs
came to dominate antidepressant therapy. A typical case for low
3D but high 2D similarity is the pair bupropion and ketorolac,
which share no targets. The overwhelmingly common case for
low 2D and low 3D similarity is exemplified by albuterol and
imipramine, again sharing no common targets. About 2% of the
time, drugs with some overlapping targets share no similarity at
all. The case of sildenafil and tadalafil are a particularly striking
example, both binding PDE5 within the same volume, but ex-
hibiting no molecular similarity, either by eye or through computa-
tional means.1 Note, however, that while the annotated targets
were identical for the pair, their detailed pharmacology is
significantly different, particularly with respect to half-life.
These findings are not surprising in a qualitative sense. It should

be the case that nearly identical molecules will more frequently
share very similar biological effects than those that start to differ.
We believe that the degree of deviation in effects is striking. There
is a 4-fold difference in the a priori likelihood that two drugs will
share identical pharmacological targets when shifting from high
2D and high 3D similarity to a case that shares only high 3D
congruence. Consider the case of designing a new drug with
knowledge of the structures of existing drugs within a therapeutic
category. In the modern research environment, it is likely that
one will be able to guarantee that the desired target be among
those that will exhibit pharmacological effects, but one cannot
know that these effects will be the dominating ones. FromFigure 12,
we will consider the molecule pairs that share some targets in this
analysis. By designing ame-too analogue (high 2D and 3D similarity
to existing drugs), one has about a 47% chance of showing the
same target profile as the incumbent compound versus showing
either a difference in secondary targets or overlapping targets
with different primary effects. By designing a structurally novel
compound (high 3D but low 2D), one has a 23% chance of
showing the same target profile. In the me-too case, chances are
even (53%:47%) in terms of seeing novelty at the level of target
specificity, but in the case of a structurally novel drug scaffold, the
chances are 3:1 in favor of novelty (77%:23%). Two things are
worth noting: First, with modern 3Dmolecular similarity and 3D
QSAR methods, design of such compounds is tractable. Second,
the development risks associated with novelty are almost cer-
tainly higher because one cannot know a priori with full con-
fidence what the precise biological effect differences might be,
only that one is more likely to encounter them.

’CONCLUSIONS

We have reported a new method for combining information
from molecular similarity computations in order to effectively
make inferences based on the known activity of sets of molecules.
The approach is general and can be applied to any similarity
method, offering a unifiedmeans to fuse the output frommultiple

sources to produce a single log-odds score. Two aspects are
particularly important: (1) mapping of similarity values to p-values
in a context-specific way because raw similarity values have different
significance depending on the complexity of the molecules being
compared, and (2) offering a means of data fusion that balances
evidence in favor of an assertion with evidence against the
assertion while avoiding degeneracies that arise from literal inter-
pretation of empirically estimated p-values.

By comprehensively applying the method to a large set of
drugs with overlapping pharmacological effects, we were able to
identify differences in the predictive ability of 2D similarity methods
compared with 3D ones. In assessing the predictive value of the
approach, themost comprehensive analyses were done considering
recovery of known primary and secondary targets. Particularly for
the prediction of unanticipated off-target effects, 3D performed
much better than 2D, although the combination of both was
beneficial. Comprehensive analysis of false positive predictions
was impossible due to the lack of systematic profiling of drugs
against large panels of targets. However, using the well-known
muscarinic side effects as a surrogate for direct muscarinic
modulation, we assessed the behavior of drugs lacking explicit
annotation. Within this set, we established excellent separation
of drugs with muscarinic side-effects from those with none
apparent. Alternative approaches such as belief theory and SEA
performed less well.

We also considered the relationship between chemical struc-
tural novelty and pharmacological novelty. The key finding was
that for a me-too drug pair (exhibiting both high 2D and 3D
similarity), the chances were essentially even of observing mod-
ulation of identical sets of biological targets compared with non-
identical sets. However, in the case where the drugs show high
3D similarity but show differences at the topological level, these
odds shifted to roughly three-to-one in favor of observing novel
effects at the gross level of target modulation. Clearly, even very
subtle changes in chemical structure can yield sufficient differ-
ences in potency, selectivity, or ADME/toxicity characteristics to
make for novelty in pharmacological action that can provide
benefits to patient populations over existing therapies. This is
especially true for therapeutics that target rapidly evolving patho-
gens, where minor structural modifications can overcome resis-
tance. But it is clear that introduction of a novel scaffold brings
significantly higher risk and potentially higher reward in terms of
novelty that might be beneficial for patients.

While we believe that more detailed study is warranted, con-
sideration should be given to regulatory changes that better
balance the risk/reward equation for drug discovery. One pos-
sibility would be to always require a head-to-head clinical compar-
ison against an approved close analogue in cases of me-too drug
candidates seeking regulatory approval (excepting those that
target pathogens). For drug candidates exhibiting novel struc-
tures, such requirements might still be imposed as they are
currently on an ad hoc basis but would not be presumptively
required. We believe that a disproportionate amount of research
and clinical development effort is currently spent on drugs that
have relatively little chance of providing significant new benefits
to patients. Additional study will be required, however, in order
to quantify this to the extent desirable for a regulatory modification.

An area for future research will involve systematic projection
of phenotypic side-effects shared by drugs onto potential biological
targets. As shown by Scheiber et al.,42 integration of such
projections with information about biological network structures
can help to identify the specific molecular basis for clinically
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important adverse drug reactions. Use of more sophisticated
methods for the underlying chemical to target inferences, as
presented here, should serve to make such exercises more effective
in identifying the causative factors.
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